Inorg. Chem. 2003, 42, 6142-6146

Quaternary Salts Containing the Pentafluorosulfanyl (SF₅) Group

Rajendra P. Singh,[†] Rolf W. Winter,[‡] Gary L. Gard,[‡] Ye Gao,[†] and Jean'ne M. Shreeve^{*,†}

Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, and Department of Chemistry, Portland State University, Portland, Oregon 97207

Received June 14, 2003

The first quaternary salts of pyridine (2), *N*-methyl imidazole (3), *N*-propyl triazole (4), and pyridazine (5) that contain the pentafluorosulfanyl (SF₅) group were prepared and characterized. Neat reactions of the aromatic nitrogen compounds with SF₅(CF₂)_n(CH₂)_ml (n = 2 or 4, m = 2 or 4) gave quaternary iodides **6a–c**, **7a–c**, **8a**, and **9a**,**b**, which were metathesized with LiN(SO₂CF₃)₂ to form the bis(trifluoromethylsulfonyl)amides **10a–c**, **11a–c**, **12a**, and **13a**,**b**, in high yields. With the exception of the pyridine bis(trifluoromethylsulfonyl)amide salts, the compounds melted or exhibited a T_g at <0 °C. The methylimidazolium, pyridinium, and pyridazinium salts exhibited densities of ~2 g/cm³. Particularly striking was the density of CF₃(CF₂)₅(CH₂)₂-pyridazinium N(CF₃SO₂)₂ measured at 2.13 g/cm³; however, an atypically high density for the 1-CF₃(CF₂)₅(CH₂)₂-3-methyl imidazolium amide (**14**) was also observed at 1.77 g/cm³. All quaternary salts were characterized via IR, ¹⁹F, ¹H, and ¹³C NMR spectra and elemental analyses.

Introduction

Pyridinium, pyridazinium, imidazolium, and triazolium quaternary salts with alkyl¹ and, to a lesser extent, polyfluoroalkyl substituents² continue to be of broad interest. However, despite the continuing work with pentafluorosulfanyl-containing (SF₅) compounds, for example, in liquid crystal applications particularly where highly polar terminal groups are desired,³ the introduction of this group via quaternization methodologies has not been examined. Therefore, the properties of such salts are unknown. Derivatives of sulfur hexafluoride (SF₆) often reflect the high thermal, radiative, and chemical stability of the parent compound and thus offer many opportunities for further exploration.⁴

While many low-melting salts have been reported that have sulfur-containing anions, such as $N(SO_2CF_3)_2^-$ and $R_fSO_3^-$ ($R_f = CF_3, C_4F_9$),^{2a} the number of sulfur-containing cationic species in such salts is relatively small.⁵ Trimethylsulfonium bromide readily forms low-melting, albeit viscous, salts with aluminum halides; however, with $N(SO_2CF_3)_2^-$, the triethylsulfonium salt (mp = -35 °C) is among the least viscous of the low-melting salts known (30 mP s at 25 °C) and its

10.1021/ic034669t CCC: \$25.00 © 2003 American Chemical Society Published on Web 08/23/2003

 $[\]ast$ Author to whom correspondence should be addressed. E-mail: jshreeve@uidaho.edu.

[†] University of Idaho.

[‡] Portland State University.

^{(1) (}a) Welton, T. Chem. Rev. 1999, 99, 2071-2083 and references therein. (b) Wasserscheid, P.; Keim, W. Angew Chem., Int. Ed. 2000, 39, 3722-3789 and references therein. (c) Holbrey, J. D.; Seddon, K. R. Clean Products Processes 1999, 1, 223-236 and references therein. (d) Earle, M. J.; Seddon, K. R. Pure Appl. Chem. 2000, 72, 1391-1398 and references therein. (e) Seddon, K. R. J. Chem. Technol. Biotechnol. 1997, 68, 351-356 and references therein. (f) Lang, S. A., Jr.; Lee, V. J. Prog. Heterocycl. Chem. 1992, 4, 107-122 and references therein. (g) Turnbull, K. Prog. Heterocycl. Chem. 1998, 10, 153-171 and references therein. (h) Turnbull, K. Prog. Heterocycl. Chem. 1999, 11, 163-183 and references therein. (i) Garratt, P. J. 1,2,4-Triazoles. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Elsevier Science Inc.: New York, 1996; Vol 4, pp 127–163 and references therein. (j) Grimmett, M. R. Imidazoles. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Elsevier Science Inc.: New York, 1996; Vol. 3, pp 77-220 and references therein. (k) Coates, W. J. Pyridazines and Their Benzo Derivatives. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Elsevier Science Inc.: New York, 1996; Vol 6, pp 1-91 and references therein. (1) Commins, D. L.; Joseph, S. P. Pyridines and their Benzo Derivatives: Reactivity at the Ring. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Elsevier Science Inc.: New York, 1996; Vol. 5, pp 37-89 and references therein.

^{(2) (}a) Bonhôte, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. *Inorg. Chem.* 1996, *35*, 1168–1178 and references therein.
(b) Singh, R. P.; Manandhar, S.; Shreeve, J. M. *Tetrahedron Lett.* 2002, *43*, 9497–9499 and references therein. (c) Singh, R. P.; Manandhar, S.; Shreeve, J. M. *Synthesis* 2003, 1579–1585. (d) Mirzaei, Y. R.; Twamley, B.; Shreeve, J. M. *J. Org. Chem.* 2002, *67*, 9340–9345 and references therein. (e) Mirazei, Y. R.; Shreeve, J. M. *Synthesis* 2003 (1), 24–26 and references therein. (f) Wasserscheid, P.; Hilgers, C.; Boesmann, A. EP 1182197, February 27, 2002. (g) Wasserscheid, P.; Hilgers C. EP 1182196, February 27, 2002. (g) Masterscheid, P.; Hilgers, S.; Goe, G. L.; Keay, J. F.; Scriven, E. F. V. *J. Org. Chem.* 1989, *54*, 731–732. (i) De Keyzer, R.; Van Rompuy, L.; Dewanckele, J.-M.; Monbaliu, M. EP 0677790, October 18, 1995.

^{(3) (}a) Kirsch, P.; Bremer, M. Angew. Chem., Int. Ed. 2000, 39, 4216–4235. (b) Kirsch, P.; Bremer, M.; Kirsch, A.; Osterodt, J. J. Am. Chem. Soc. 1999, 121, 11277–11280. (c) Kirsch, P.; Bremer, M.; Heckmeier, M.; Tarumi, K. Angew. Chem., Int. Ed. 1999, 38, 1989–1992;

Quaternary Salts Containing Pentafluorosulfanyl

conductivity compares favorably with the analogous 1-ethyl-3-methylimidazolium salt. 3-Butyl-4/5-methylthiazolium tetrafluoroborate salts are reported as stable, yellow-orange liquids.⁶ Additionally, a quaternary ammonium chloride that contains a sulfur substituent at nitrogen melts at 80 °C.⁷

With an electronegativity of ~3.62^{8a} (fluorine = ~4.00), the pentafluorosulfanyl group as a substitutent on a carbon chain should be suitable as a replacement for its counterparts that contain a trifluoromethyl group (~3.35). In an excellent study, the electronic effects of the SF₅ and the CF₃ group on an aromatic ring were determined. The ionization constants of a number of benzoic acids, anilinium ions, and phenol derivatives containing NO₂, SF₅, and CF₃ groups showed that the SF₅ group is more strongly electron withdrawing than a CF₃ group and approaches a nitro group in inductive power. Also, from polarographic reduction measurements with substituted nitrobenzenes, the following series in order of decreasing electron withdrawing power was NO₂ > SF₅ > CO₂H > CF₃ > H > CH₃.^{8b}

However, because of the greater molecular mass and greater polarity of the SF_5 group, the physical properties of these compounds may differ from CF_3 analogues. On the basis of its chemical robustness and lipophilic character, the SF_5 group has considerable potential as a structural component in polymeric, fuel-cell electrolyte, surface, and dielectric applications.⁹

Recently we have reported some low-melting polyfluoroalkyl-substituted quaternary imidazolium and triazolium salts that have wide liquid ranges and high thermal stabilities.^{2b-e} Additionally, the *N*-mono- and *N*,*N'*-dibipy-

- (6) Davis, J. H., Jr.; Forrester, K. J. *Tetrahedron Lett.* **1999**, 1621–1622.
 (7) Yamamoto, K. (Kamogawa Chemical Industries Co.). Jpn. Kokai
- Tokkyo Koho 29006, 717, 1954. *Chem. Abstr.* **1956**, *50*, 40563. (8) (a) Castro, V.: Boyer, J. L.: Canselier, J. P.: Terieson, R. J.:
- (8) (a) Častro, V.; Boyer, J. L.; Canselier, J. P.; Terjeson, R. J.; Mohtasham, J.; Peyton, D. Y.; Gard, G. L. Magn. Reson. Chem. 1995, 33, 506–510. (b) Sheppard, W. A. J. Am. Chem. Soc. 1962, 84, 3072– 3076.
- (9) (a) Winter, R.; Nixon, P. G.; Terjeson, R. J.; Mohtasham, J.; Holcomb, N. R.; Grainger, D. W.; Graham, D.; Castner, D. G.; Gard, G. L. J. Fluorine Chem. 2002, 115, 107–113. (b) Gard, G. L.; Winter, R.; Nixon, P. G.; Hu, Y.-H.; Holcomb, N. R.; Grainger, D. W.; Castner, D. G. Polym. Prepr. 1998, 39 (2), 962–963. (c) Hamel, N. N.; Ullrich, S.; Gard, G. L.; Hafshun, R. L.; Zhang, Z.; Lerner, M. M. J. Fluorine Chem. 1995, 71, 209–210. (d) Jesih, A.; Sipyagin, A. M.; Chen, L. F.; Hog, W. D.; Thrasher, J. S. Polym. Prepr. 1993, 34 (1), 383–383.

ridinium quaternary polyfluoroalkyl salts that are water stable and decompose at >340 °C have been synthesized.¹⁰ Most of these materials melt below 100 °C, and all become liquid at <150 °C. In the present work, we have carried out quaternization reactions of pyridine, pyridazine, *N*-methyl imidazole, and *N*-propyl triazole with $SF_5(CF_2)_n(CH_2)_mI$ (*n* = 2 or 4, *m* = 2 or 4)¹¹ and metathesized the resulting salts with Li(NSO₂CF₃)₂ in order to obtain low-melting, dense liquids. The properties of these stable salts are compared with their CF₃ and CH₃ analogues. Some of the former are also reported here for the first time.

Results and Discussion

Initially pyridine (2), N-methyl imidazole (3), N-propyl triazole (4), or pyridazine (5) was mixed with SF₅CH₂CH₂-Br¹² at 25 °C for several days with essentially no reaction. Heating the mixture at 65 °C for several hours did give quaternary compounds, but major decomposition of the pentafluorosulfanyl-containing compound occurred. This may be due to intrinsic instability of the SF₅ functionality in this compound. However, in sharp contrast, SF5CF2CF2CH2CH2-CH₂CH₂I (1a) gave excellent yields. For example, reaction of 1a with pyridine (2) in 1:1.1 molar ratio without solvent at 65 °C for 12 h led to the formation of the quaternary salt (6a) in 90% isolated yield (Scheme 1). Under similar conditions, reactions of **1a** with *N*-methyl imidazole (**3**), N-propyl triazole (4), and pyridazine (5) gave the monoquaternary salts (7a, 8a, 9a) in >85% isolated yields. Next we examined the reactions of SF5CF2CF2CH2CH2I (1b) and SF5- $CF_2CF_2CF_2CF_2CH_2CH_2I$ (1c) with 2 and 3 and 1b with 5 at

(10) Singh, R. P.; Shreeve, J. M. Chem. Commun. 2003, 1366-1367.

(12) Merrill, C. Ph.D. Thesis, University of Washington, 1962.

^{(4) (}a) Winter, R.; Gard, G. L. Functionalization of Pentafluoro-λ⁶-sulfanyl (SF₅) Olefins and Acetylenes. In *Inorganic Fluorine Chemistry Toward the 21st Century*; Thrasher, J. S., Strauss, S. H., Eds.; ACS Symposium Series 555; American Chemical Society: Washington, DC, 1994; pp 128–147. (b) Verma, R. D.; Kirchmeier, R. L.; Shreeve, J. M. *Adv. Inorg. Chem.* **1994**, *41*, 125–169. (c) Aït-Mohand, S.; Dolbier, W. R., Jr. Org. Lett. **2002**, *4*, 3013–3015. (d) Pigos, J. M.; Jones, B. R.; Zhu, Z.-T.; Musfeldt, J. L.; Homes, C. C.; Koo, H.-J.; Whangbo, M.-H.; Schlueter, J. A.; Ward, B. H.; Wang, H. H.; Geiser, U.; Mohtasham, J.; Winter, R. W.; Gard, G. L. *Chem. Mater.* **2001**, *13*, 1326–1333. (e) Bowden, R. D.; Comina, P. J.; Greenhall, M. P.; Kariuki, B. M.; Loveday, A.; Philp, D. Tetrahedron **2000**, *56*, 3399–3408.

^{(5) (}a) Matsumoto, H.; Matsuda, T.; Miyazaki, Y. Chem. Lett. 2000, 1430–1431. (b) Ma, M.; Johnson, K. E. Can. J. Chem. 1995, 73, 593–598. (c) Ma, M.; Johnson, K. E. In Proceedings of the Ninth International Symposium on Molten Salts; Hussey, C. L., Newman, D. S., Mamantov, G., Ito, Y., Eds.; The Electrochemical Society: Pennington, NJ, 1994; Vol. 94–13, pp 179–186. (d) Jones, S. D.; Blomgren, G. E. In Proceedings of the Seventh International Symposium on Molten Salts; Hussey, C. L., Wilkes, J. S., Iro, Y. Eds.; The Electrochemical Society: Pennington, NJ, 1994; Vol. 94–13, pp 179–186. (d) Jones, S. D.; Blomgren, G. E. In Proceedings of the Seventh International Symposium on Molten Salts; Hussey, C. L., Flengas, S. N., Wilkes, J. S., Iro, Y. Eds.; The Electrochemical Society: Pennington, NJ, 1990; Vol. 90–17, pp 273–280.

⁽¹¹⁾ Terjeson, R. J.; Renn, J.; Winter, R. W.; Gard, G. L. J. Fluorine Chem. 1997, 82, 73–78.

Table 1. Melting Point (phase transition) and Density Data for Bis(trifluoromethane-sulfonyl)amides

	pyridinium		pyridazinium		MeIm		PrTriazolium	
R	$T_{\rm m} (T_{\rm g})^a$	d^b	$T_{\rm m} \left(T_{\rm g} \right)$	d	$T_{\rm m} \left(T_{\rm g} \right)$	d	$T_{\rm m} \left(T_{\rm g} \right)$	d
SF ₅ (CF ₂) ₂ (CH ₂) ₄ SF ₅ CF ₂) ₂ (CH ₂) ₂ SF ₅ (CF ₂) ₄ (CH ₂) ₂ CF ₃ CH ₂ CH ₂ CF ₃ (CF ₂) ₅ (CH ₂) ₂ CH ₃ (CH ₂) ₂ CH ₃ (CH ₂) ₆ CH ₃ (CH ₂) ₇	18 33 36.1(-39.7) 38.4	2.02 1.96 1.97	(-41.7) -14 (-64) -13	1.87 1.93 1.85 ^c 2.13 ^c	$ \begin{array}{r} -56.7 \\ -55.5 \\ -50 \\ -74 \\ (-50) \\ (-87) \\ 7(-85) \\ (-84) \\ \end{array} $	$2.01 \\ 2.00 \\ 1.97 \\ 1.44^{d} \\ 1.77 \\ 1.48^{f} \\ 1.34^{f} \\ 1.32^{f}$	-54.8 $(-67)^e$ 28^e	1.89 1.60

^a Melting point (°C), phase transition (°C). ^b Density, pycnometer. ^c Reference 13. ^d Reference 2b,c. ^e Reference 2d,e; butyl. ^f Reference 14.

Scheme 2

65 °C without solvent. The iodides, **6b**, **6c**, **7b**, **7c**, and **9b** were obtained in good yields (Scheme 1).

Reactions of 1b and 1c with 3 were found to be sluggish on heating, but lower temperatures were necessary because when the reaction was carried out at >65 °C, some decomposition occurred. All of the iodide salts (6a-c, 7ac, 8a, 9a-b) were stable to water and air and were solids at 25 °C. With the exception of the pyridazinium iodides (9a,b), which displayed only partial miscibility with all solvents tried, 6a-c, 7a-c, and 8a were soluble in acetone and ethyl acetate. Water solubility was a function of the number of fluorine atoms in the SF₅ chain, i.e., 6a, 6b, 7a, 7b, and 8awere soluble while 6c and 7c were only slightly miscible.

Each of the iodides was metathesized with LiN(SO₂CF₃)₂ at 25 °C in water or in a water/acetone mixture (1:1) to form, with the exception of the SF₅-pyridiniuim amides, **10b** (mp = 33 °C) and **10c** (mp = 36.1 °C), new salts that melted or showed a phase transition below 25 °C. Compound **10a** melts at 18 °C. The remaining room-temperature liquids exhibit $T_{\rm m}$ or $T_{\rm g}$ at -50 °C or below (Table 1).

These pentafluorosulfanyl polyfluoroalkyl quaternary salts exhibit densities around 2 g/cm³, making them the most dense of any of the non-chloroaluminate salts reported to date. This is not surprising since the SF₅ moiety adds considerable mass to the cation. Interestingly, comparison of the melting points or glass transition points of the methyl imidazolium salts showed that they all occur at ≤ -50 °C with the latter for the non-fluoroalkyl-substituted salts being around -85 °C. The densities of these salts decrease drastically from the SF₅ polyfluoroalkyl derivatives at ~2.0 g/cm³ to CF₃CH₂CH₂- $^{2b,c} \approx CH_3CH_2CH_2^{-14}$ at 1.44–1.48 g/cm⁻³. Surprisingly, the methyl imidazolium salt with an eight-carbon polyfluoroalkyl substituent, $CF_3(CF_{2)5}(CH_2)_2 - (14)$, with a density at 1.77 g/cm³ greatly exceeds the salts with seven- and eightcarbon alkyl groups, CH₃(CH₂)₆- and CH₃(CH₂)₇-, at 1.32 g/cm^{3.14}While it is expected that the fluorine-containing analogue should be somewhat more dense, such a marked difference was not anticipated. In keeping with the greater density arising when the substituent is $CF_3(CF_2)_5(CH_2)_2$ -, note that the pyridazinium salt¹³ is the most dense yet at 2.13 g/cm³, even exceeding the SF₅ polyfluoroalkyl derivatives. However, as with the SF₅ polyfluoroalkyl pyridinium amides, the $CF_3(CF_2)_5(CH_2)_2$ -substituted pyridinium salt (15) melts at 38.4 °C. Typical of polyfluoroalkyl triazolium salts, the SF₅ polyfluoroalkyl propyl triazolium compound has a density at ~1.90 g/cm³ whereas the butyl $CF_3(CF_2)_5(CH_2)_2$ triazolium amide is a solid that melts at 28 °C.2d,e With the exception of the SF₅ polyfluoroalkyl salts that are thermally stable in the vicinity of >300 °C, all of the others (non-SF₅-containing) are stable to >375 °C and higher. This lower thermal stability likely results from instability of the SF5 moiety itself.

Conclusion

In conclusion, new thermally stable, pentafluorosulfanyl polyfluoroalkyl pyridinium, pyridazinium, methyl imidazolium, and propyl tetrazolium quaternary salts have been synthesized and characterized. Melting points (or T_g) are

⁽¹³⁾ Gao, Y. University of Idaho, private communication.

⁽¹⁴⁾ Dzyuba, S. V.; Bartsch, R. A. Chemphyschem 2002, 3, 161-166.

Quaternary Salts Containing Pentafluorosulfanyl

lower than 0 °C. The presence of the pentafluorosulfanyl group markedly increases the densities of the bis(trifluorosulfonyl)amide salts. However, $CF_3(CF_2)_5(CH_2)_2^-$ as a substitutent on the ring also plays a major role in causing an increase in the liquid densities relative to the C8 alkyl or to shorter polyfluoroalkyl substitutents and, in some cases, to the pentafluorosulfanyl polyfluoroalkyl substitutents.

Experimental Section

General. All the reagents used were analytical reagents purchased from commercial sources and used as received. The SF₅ compounds were synthesized by the Gard group at Portland State University.¹¹ ¹H, ¹⁹F, and ¹³C NMR spectra were recorded in acetone- d_6 on a spectrometer operating at 300, 282, and 75 MHz, respectively. Chemical shifts are reported in ppm relative to the appropriate standard, CFCl₃ for ¹⁹F and TMS for ¹H and ¹³C NMR spectra. IR spectra were recorded using NaCl plates for neat liquids and KBr pellets for solids. Differential scanning calorimetry (DSC) data were recorded in the range of -85 to 400 °C. Elemental analyses were carried out at the Shanghai Institute for Organic Chemistry.

General procedure. Pyridine (2), *N*-methyl imidazole (3), N-propyltriazole (4), or pyradizine (5) (5 mmol) and $I(CH_2)_m(CH_2)_n$ -SF₅ (1a-c) were sealed in a Pyrex glass tube in vacuo by cooling to liquid nitrogen temperature and then heated at 65 °C for ~12 h. After cooling at room temperature, the tube was opened and the volatile material was removed at reduced pressure. Washing crude products with an acetone/pentane mixture (1:3) gave 6a-c, 7a-c, 8a, and 9a-b in good yields. Reaction of these iodides with LiN-(SO₂CF₃)₂ in a water/acetone mixture (2:1) in 1:1.2 molar ratio was carried out at room temperature for 5 h. After the acetone was removed, the water-insoluble oily liquid was separated and washed with a small amount of water to give 10a-c, 11a-c, 12a, and 13a-b in high yields.

SF₅CF₂CF₂CH₂CH₂CH₂CH₂-NC₅H₅⁺I⁻ (6a). Yield, 90%. IR (KBr pellet): 3034, 1633, 1491, 1463, 1392, 1319, 1288, 1178, 1112, 1037, 870, 821, 737 cm⁻¹. ¹⁹F NMR: δ 70.74 (m, 1F), 48.50 (d, m, 4F), -95.55 (m, 2F), -116.50 (m, 2F) cm⁻. ¹H NMR: δ 1.83 (m, 2H), 2.22 (m, 4H), 5.05 (m, 2H), 8.16 (t, 2H, *J* = 6.9 Hz), 8.58 (t, 1H, *J* = 7.8 Hz), 9.58 (d, 2H, *J* = 5. 5 Hz). ¹³C NMR: δ 18.1, 31.7 (t, *J* = 22.1 Hz), 31.9, 114.0–127.0 (m), 129.4, 145.8, 146.4. Anal. Calcd for C₁₁H₁₃F₉INS: C, 26.99; H, 2.66; N, 2.86. Found: C, 27.06; H, 2.88; N, 2.82.

SF₅CF₂CF₂CH₂CH₂-NC₅H₅⁺I⁻ (6b). Yield, 87%. IR (KBr pellet): 3041, 1633, 1580, 1487, 1429, 1363, 1229, 1195, 1119, 1003, 960, 869, 816, 729 cm⁻¹. ¹⁹F NMR: δ 64.41 (m, 1F), 43.47 (d, m, 4F), 96.43 (m, 2F), -115.28 (m, 2F) cm⁻¹. ¹H NMR: δ 2.66 (m, 2H), 4.47 (m, 2H), 7.67 (t, 2H, J = 6.7 Hz), 8.17 (t, 1H, J = 7.8 Hz), 8.93 (d, 2H, J = 5.5 Hz). ¹³C NMR: δ 33.0 (t, J = 21.2 Hz), 56.5, 114.0–127.0 (m), 128.7, 145.9, 147.1. Anal. Calcd for C₉H₉F₉INS: C, 23.43; H, 1.95; N, 3.04. Found: C, 24.20; H, 2.28; N, 3.19.

SF₅CF₂CF₂CF₂CF₂CH₂CH₂-NC₅H₅⁺I⁻ (6c). Yield, 85%. IR (neat): 3042, 1635, 1580, 1528, 1480, 1295, 1188, 1122, 1013, 928, 867, 828, 736 cm⁻¹. ¹⁹F NMR: δ 63.36 (m, 1F), 43.62 (d, m, 4F), -94.55 (m, 2F), -113.78 (m, 2F) 122.86 (m, 4F). ¹H NMR: δ 2.84 (m, 2H), 4.82 (m, 2H), 7.80 (t, 2H, J = 6.7 Hz), 8.41 (t, 1H, J = 7.8 Hz), 8.85 (d, 2H, J = 5.5 Hz). ¹³C NMR: δ 32.3 (t, J = 21.3 Hz), 54.4, 114.0–127.0 (m), 129.5, 145.7, 147.4. Anal. Calcd for C₁₁H₉F₁₃INS: C, 23.50; H, 1.6; N, 2.50. Found: C, 23.57; H, 1.84; N, 2.48.

 $SF_5CF_2CF_2CH_2CH_2CH_2CH_2-NC_5H_5^+N(SO_2CF_3)_2^-$ (10a). Liquid (mp = 18 °C, DSC). Yield, 92%. IR (neat): 3093, 1635, 1633, 1490, 1354, 1180, 1137, 1060, 875, 828, 738, cm⁻¹. ¹⁹F NMR: δ 66.09 (m, 1F), 44.40 (d, m, 4F), -75.22 (s, 6F), -90.54 (m, 2F), -110.94 (m, 2F). ¹H NMR: δ 1.84 (m, 2H), 2.2–2.4 (m, 4H), 4.95 (m, 2H), 8.29 (t, 2H, J = 6.9 Hz), 8.74 (t, 1H, J = 7.8 Hz), 9.19 (d, 2H, J = 5.5 Hz). ¹³C NMR: δ 18.0, 31.1, 31.5 (t, J =22.5 Hz), 31.9, 114.0–127.0 (overlapped quartet with multiplets), 129.6, 145.7, 146.8. Anal. Calcd for C₁₃H₁₃F₁₅N₂O₄S₃: C, 24.30; H, 2.02; N, 4.45. Found: C, 24.49; H, 2.18; N, 4.65.

SF₅**CF**₂**CF**₂**CH**₂**CH**₂**-NC**₅**H**₅⁺**N**(**SO**₂**CF**₃)₂⁻ (**10b**). Liquid (mp = 33 °C, DSC). Yield, 90%. IR (neat): 3197, 1635, 1492, 1354, 1220, 1180, 1060, 963, 879, 820 cm⁻¹. ¹⁹F NMR: δ 64.58 (m, 1F), 43.61 (d, m, 4F), -80.62 (s, 6F), -96.62 (m, 2F), -115.91 (m, 2F) cm⁻. ¹H NMR: δ 2.65 (m, 2H), 4.45 (m, 2H), 7.68 (t, 2H, J = 6.6 Hz), 8.18 (t, 1H, J = 7.8 Hz), 8.92 (d, 2H, J = 5.5 Hz). ¹³C NMR: δ 33.1 (t, J = 21.5 Hz), 56.4, 114.0–127.0 (overlapped quartet with multiplets), 128.8, 145.8, 147.0. Anal. Calcd for C₁₁H₉F₁₅N₂O₄S₃: C, 21.50; H, 1.50; N, 4.56. Found: C, 21.70; H, 1.67; N, 4.66.

SF₅CF₂CF₂CF₂CF₂CH₂CH₂-NC₅H₅⁺N(SO₃CF₃)₂⁻ (10c). Liquid ($T_g = -39.5$ °C, mp = 36.1 °C, DSC). Yield, 90%. IR (neat): 3047, 1633, 1581, 1533, 1487, 1298, 1157, 1197, 1120, 1003, 962, 873, 822, 730 cm⁻¹. ¹⁹F NMR: δ 63.45 (m, 1F), 43.51 (d, m, 4F), -79.96 (s, 6F), -94.64 (m, 2F), -113.92 (m, 2F) 122.97 (m, 4F). ¹H NMR: δ 2.79 (m, 2H), 4.79 (m, 2H), 7.83 (t, 2H, J = 6.7 Hz), 8.32 (t, 1H, J = 7.8 Hz), 8.84 (d, 2H, J = 5.5 Hz). ¹³C NMR: δ 32.2 (t, J = 21.3 Hz), 54.6, 114.0–127.0 (overlapped quartet with multiplets), 129.3, 145.8, 147.2. Anal. Calcd for C₁₃H₉F₁₉N₂O₄: C, 21.90; H, 1.32; N, 4.53. Found: C, 22.05; H, 1.46; N, 4.40.

1-SF₅CF₂CF₂CH₂CH₂CH₂CH₂CH₂-3-methylimidazolium⁺I⁻ (7a). Yield, 91%. IR(neat): 3074, 1568, 1460, 1330, 1041, 1196, 1116, 874, 826, 732 cm⁻¹. ¹⁹F NMR: \delta 66.00 (m, 1F), 44.45 (d, m, 4F), -95.65 (m, 2F), -115.54 (m, 2F). ¹H NMR: \delta 1.64 (m, 2H), 1.8–2.2 (m, 4H), 4.00 (s, 3H), 4.38 (m, 2H), 7.51 (d, 2H, *J* **= 41.0 Hz), 9.86 (s, 1H). ¹³C NMR: \delta 18.2, 30.3, 31.9 (t,** *J* **= 22.3 Hz), 37.8, 50.3, 123.5, 124.5, 137.4, 114.0–122.0 (m). Anal. Calcd for C₁₀H₁₄F₉IN₂S: C, 24.39; H, 2.85; N, 5.69. Found: C, 24.52; H, 2.91; N, 5.88.**

1-SF₅CF₂CF₂CH₂CH₂-3-methylimidazolium⁺I⁻ (7b). Yield, 88%. IR (neat): 3082, 1573, 1521, 1458, 1381, 1280, 1118, 1001, 877, 809, 750 cm⁻¹. ¹⁹F NMR: δ 66.64 (m, 1F), 43.71 (d, m, 4F), -96.41 (m, 2F), -115.80 (m, 2F). ¹H NMR: δ 2.45 (m, 2H), 3.83 (s, 3H), 4.18 (m, 2H), 6.67 (d, 2H, J = 34.6 Hz), 9.60 (s, 1H). Anal. Calcd for C₈H₁₀F₉IN₂S: C, 20.69; H, 2.16; N, 6.03. Found: C, 20.62; H, 1.94; N, 6.68.

1-SF₅CF₂CF₂CF₂CF₂CH₂CH₂-3-methylimidazolium⁺I⁻ (7c). Yield, 88%. IR (neat): 3131, 1565, 1470, 1428, 1358, 1175, 1142, 1055, 882, 773 cm⁻¹. ¹⁹F NMR: δ –63.82 (m, 1F), 43.52 (d,m, 4F), -94.51 (m, 2F), -115.11 (m, 2F) 123.52 (m, 4F). ¹H NMR: δ 2.62 (m, 2H), 3.88 (s, 3H), 4.38 (m, 2H), 7.16 (s, 1H), 7.36 (s, 1H), 8.72 (s, 1H). ¹³C NMR: δ 31.5 (t, *J* = 21.5 Hz), 36.8, 42.6, 54.3, 114.0–127.0 (m), 123.2, 124.5, 137.5. Anal. Calcd for C₁₀H₁₀F₁₃IN₂S: C, 21.20; H, 1.77; N, 4.96. Found: C, 21.63; H, 2.35; N, 5.30.

1-SF₅CF₂CF₂CH₂CH₂CH₂CH₂-3-methylimidazolium⁺-N(SO₂CF₃)₂⁻ (11a). Liquid (mp = -56.7 °C, DSC). Yield, 87%. IR (neat): 3157, 1572, 1464, 1432, 1352, 1192, 1136, 1059, 880, 828, 790 cm⁻¹. ¹⁹F NMR: δ -65.51 (m, 1F), 43.76 (d,m, 4F), -80.32 (s, 6F), -96.09 (m, 2F), -116.24 (m, 2F). ¹H NMR: δ 1.47 (m, 2H), 1.8-2.0 (m, 4H), 3.56 (s, 3H), 4.03 (m, 2H), 7.25 (d, 2H, J = 28.9 Hz), 8.58 (s, 1H). ¹³C NMR: δ 17.8, 29.7, 31.4 (t, J = 22.5 Hz), 36.6, 49.8, 114.0-127.0 (overlapped quartet with multiplets), 123.1, 124.4, 136.7. Anal. Calcd for $C_{12}H_{14}F_{15}N_3O_4S_3$: C, 22.32; H, 2.17; N, 6.51. Found: C, 22.50; H, 2.20; N, 6.79.

1-SF₅CF₂CF₂CH₂CH₂-3-methylimidazolium⁺N(SO₂CF₃)₂⁻ (11b). Liquid (mp = -55.5 °C, DSC). Yield, 86%. IR (neat): 3160, 1568, 1463, 1432, 1352, 1189, 1136, 1058, 1058, 1002, 882, 741 cm⁻¹. ¹⁹F NMR: δ 65.45 (m, 1F), 44.10 (d,m, 4F), -80.38 (s, 6F), -96.50 (m, 2F), -115.15 (m, 2F). ¹H NMR: δ 2.54 (m, 2H), 3.60 (s, 3H), 4.27(m, 2H), 7.25 (d, 2H, *J* **= 42 Hz), 8.60 (s, 1H). ¹³C NMR: δ 32.4 (t,** *J* **= 22.5 Hz), 36.5, 42.4, 114.0–127.0 (overlapped quartet with multiplets), 123.2, 124.5, 137.5. Anal. Calcd for C₁₀H₁₀F₁₅N₃O₄S₃: C, 19.44; H, 1.62; N, 6.80. Found: C, 19.67; H, 1.56; N, 6.65.**

1-**SF**₅**CF**₂**CF**₂**CF**₂**CF**₂**CH**₂**CH**₂**-3-methylimidazolium**⁺-**N**(**SO**₃**CF**₃)₂⁻ (**11c**). Liquid (mp = -50.0 °C, DSC). Yield, 85%. IR (neat): 3125, 1568, 1465, 1432, 1402, 1352, 1188, 1143, 1059, 883, 788 cm⁻¹. ¹⁹F NMR: δ –63.40 (m, 1F), 44.32 (d,m, 4F), –80.15 (s, 6F), –94.72 (m, 2F), –114.59 (m, 2F) 123.38 (m, 4F). ¹H NMR: δ 2.51 (m, 2H), 3.57 (s, 3H), 4.29 (m, 2H), 7.19 (s, 1H), 7.37 (s, 1H), 8.63 (s, 1H). ¹³C NMR: δ 31.4 (t, *J* = 21.5 Hz), 36.5, 42.4, 54.3, 114.0–127.0 (m), 123.3, 124.6, 137.5. Anal. Calcd for C₁₂H₁₀F₁₉N₃O₄S₃: C, 20.00; H, 1.39; N, 5.86. Found: C, 20.73; H, 1.60; N, 6.09.

1-Propyl- 4-SF₅CF₂CF₂CH₂CH₂CH₂CH₂-1, 2, 4-triazolium⁺I⁻ (**8a**). Yield, 82%. IR (neat): 3030, 1622, 1576, 1462, 1363, 1272, 1116, 1042, 956, 738 cm⁻¹. ¹⁹F NMR: δ 65.92 (m, 1F), 44.62 (d, m, 4F), -95.70 (m, 2F), -115.52 (m, 2F). ¹H NMR: δ 1.02 (t, 3H, J = 7.1 Hz), 2.07 (m, 4H), 3. 48 (m, 2H), 3.68 (s, 3H), 4.56 (q, 2H, J = 7.1 Hz), 5.02 (m, 2H), 8.62 (s, 1H), 9.63 (s, 1H). Anal. Calcd for C₁₁H₁₇F₉IN₃S: C, 25.3; H, 3.3; N, 8.12. Found: C, 25.18; H, 3.32; N, 8.15.

1-Propyl-4-SF₅CF₂CF₂CH₂CH₂CH₂CH₂CH₂-1, 2, 4-triazolium⁺N-(SO₂CF₃)₂⁻ (12a). Liquid (mp = -54.8 °C, DSC). Yield, 88%. IR (neat): 3035, 1622, 1578, 1525, 1462, 1386, 1363, 1265, 1190, 1116, 1042, 956, 826, 738 cm⁻¹. ¹⁹F NMR: \delta 66.21 (m, 1F), 44.20 (d, m, 4F), -80.12 (s, 6F), -95.88 (m, 2F), -116.42 (m, 2F). ¹H NMR: \delta1.12 (t, 3H, J = 7.0 Hz), 2.22 (m, 4H), 3. 53 (m, 2H), 3.67 (s, 3H), 4.58 (q, 2H, J = 7.0 Hz), 5.12 (m, 2H), 8.77 (s, 1H), 9.67 (s, 1H). Anal. Calcd for C₁₃H₁₆F₁₅N₄O₄S₃: C, 23.18; H, 2.38; N, 8.32. Found: C, 23.17; H, 2.52; N, 8.54.

1-SF₅CF₂CF₂CH₂CH₂CH₂CH₂-pyridazinium⁺I⁻ (9a). Mp = 145.9 °C. Yield, 82%. IR (KBr): 3054, 2950, 1581, 1196, 1118, 875, 828 cm⁻¹. ¹⁹F NMR: δ d 66.18 (5m, J = 146.1 Hz, 1F), 44.45 (d, 5m, J_1 = 144.0 Hz, J_2 = 14.12 Hz, 4F), -95.07 (5m, J = 15.53 Hz, 2F), -115.44–115.56 (m, 2F). ¹H NMR: δ d 1.86–1.94 (m, 2H), 2.39–2.53 (m, 4H), 5.23 (t, J = 7.29 Hz, 2H), 8.81–8.85 (m, 1H), 8.91–8.94 (m, 1H), 9.78 (d, J = 4.05 Hz, 1H), 10.59 (d, J = 5.76 Hz, 1H). ¹³C NMR: δ d 155.6, 151.3, 137.8, 137.3, 115.4–123.0 (m), 65.57, 31.64 (t, J = 22.53 Hz), 29.76, 18.04 (t, J = 4.04 Hz).

1-SF₅CF₂CF₂CH₂CH₂-pyridazinium⁺ I⁻ (9b). Golden solid (mp = 171.8 °C, DSC). Yield, 80%. IR (KBr): 3049, 2982, 1425, 1279, 1198, 1117, 874, 812 cm^{-1.} ¹⁹F NMR: δ 65.39 (5m, J = 145.1 Hz, 1F), 44.34 (d, 5m, J_1 = 145.8 Hz, J_2 = 13.67 Hz, 4F), -95.36 (5m, J = 14.97 Hz, 2F), -113.9–114.2 (m, 2F). ¹H NMR: δ 3.51 (ttt, J_1 = 18.77 Hz, J_2 = 7.26 Hz, J_3 = 1.60 Hz, 2H), 3.56 (s, 3H), 5.57 (t, J = 7.20 Hz, 2H), 8.88–8.91 (m, 1H), 8.96–8.99 (m, 1H), 9.81 (d, J = 4.71 Hz, 1H), 10.71 (d, J = 5.82 Hz, 1H). ¹³C NMR: δ 155.7, 152.4, 138.5, 137.4, 114.9–123.1 (m), 58.47 (t, J = 4.38 Hz), 31.94 (t, J = 21.51 Hz). MS (solid probe) (EI) *m/z* (%) 335 (M⁺, 100) (cation only).

1-SF₅CF₂CF₂CH₂CH₂CH₂CH₂-pyridazinium⁺ N(CF₃SO₂)₂⁻

(13a). Red liquid ($T_g = -41.7$ °C). Yield, 93%. IR (KBr): 3111, 2959, 1590, 1352, 1196, 1137, 1059, 880, 828, cm⁻¹. ¹⁹F NMR: δ d 66.08 (5 m, J = 146.6 Hz, 1F), 44.45 (d, 5m, $J_1 = 146.8$ Hz, $J_2 = 14.12$ Hz, 4F), -79.92 (s, 6F), -95.22 (5m, J = 15.53 Hz, 2F), -115.38 to -115.70 (m, 2F). ¹H NMR: δ 1.83–1.93 (m, 2H), 2.37–2.51 (m, 4H), 5.19 (t, J = 7.20 Hz, 2H), 8.77–8.82 (m, 1H), 8.88–8.91 (m, 1H), 9.77 (d, J = 4.59 Hz, 1H), 10.10 (d, J = 5.82 Hz, 1H). ¹³C NMR: δ 155.8, 151.0, 138.0, 137.3, 121.0 (q, J = 321.2 Hz), 115.3–123.2 (m), 66.06, 31.53 (t, J = 22.19 Hz), 29.91, 18.08 (t, J = 4.04 Hz). Anal. Calcd for C₁₂H₁₂N₃F₁₅S₃O₄: C, 23.11; H, 1.92. Found: C, 22.97; H, 2.02.

1-SF₅CF₂CF₂CH₂CH₂-pyradazinium⁺N(SO₂CF₃)₂⁻ (13b). Brown liquid, d = 1.93 g/cm³. Yield, 85%. IR (KBr): 3115, 3046, 1484, 1437, 1351, 1191, 1137, 1059, 880, 824 cm⁻¹. ¹⁹F NMR: \delta 65.25 (5m, J = 145.8 Hz, 1F), 44.31 (d, 5m, J_1 = 145.8 Hz, J_2 = 13.78 Hz, 4F), -79.90 (s, 6F), -95.57 (5m, J = 15.25 Hz, 2F), -114.0 to -114.4 (m, 2F). ¹H NMR: \delta 3.45 (tt, J_1 = 7.10 Hz, J_2 = 18.63 Hz, 2H), 5.56 (t, J = 7.10 Hz, 2H), 8.84–8.89 (m, 1H), 8.95–8.99 (m, 1H), 9.82 (d, J = 4.26 Hz, 1H), 10.25 (d, J = 5.76 Hz, 1H). ¹³C NMR: \delta 160.0, 152.1, 138.8, 137.4, 120.9 (q, J = 321.2 Hz), 114.4–123.2 (m), 58.64 (t, J = 4.38 Hz), 31.12 (t, J = 21.51 Hz). MS (solid probe) (EI) m/z (%) 335 (M⁺, 100) (cation only). Anal. Calcd for C₁₀H₈N₃F₁₅S₃O₄: C, 19.52; H, 1.13. Found: C, 19.45; H, 1.52.

 $1-CF_3(CF_2)_5(CH_2)_2-3$ -methylimidazolium⁺N(SO₂CF₃)₂⁻ (14). To 2 mmol of 1-methylimidazole was added 1.5 mmol of CF₃-(CF₂)₅(CH₂)₂I, and the mixture was maintained at 65 °C for 2 days to give 1-CF₃(CF₂)₅(CH₂)₂-3-methyl-imidazonium iodide. To a magnetically stirred solution of the latter (0.25 mmol) in water (1 mL) was added lithium bis(trifluoromethanesulfonyl)amide (0.3 mmol). After 5 min at room temperature, the water was decanted and the residue was washed with water (2.1 mL) that was removed in vacuo (0.3 mm Hg) at 40 °C for 24 h to leave 14. Yellow liquid $(T_{\rm g} = -49.9 \text{ °C})$. Yield, 96%. ¹⁹F NMR: δ -79.98 (s, 6F), -81.67 (tt, $J_1 = 2.82$ Hz, $J_2 = 9.88$ Hz, 3F), -114.3 to -115.5 (m, 2F), -122.4 (bs, 2F), -123.4 (bs, 2F), -124.1 (bs, 2F), -126.7 to -126.8 (m, 2F). ¹H NMR: δ 3.15 (tt, $J_1 = 7.19$ Hz, $J_2 = 18.96$ Hz, 2H), 4.05 (s, 3H), 4.89 (t, J = 7.19 Hz, 2H), 7.81 (t, J = 1.79 Hz, 1H), 7.97 (t, J = 1.79 Hz, 1H), 9.25 (s, 1H). ¹³C NMR: δ 138.2, 125.1, 123.7, 120.9 (q, J = 321.1 Hz), 127.6–109.0 (m), 42.73 (t, J = 5.06 Hz), 36.79, 31.82 (t, J = 21.13 Hz). Anal. Calcd for C₁₄H₁₀F₁₉N₃O₄S₂: C, 23.70; H, 1.41. Found: C, 23.68; H, 1.56.

1-CF₃(CF₂)₅(CH₂)₂-NC₅H₅⁺N(SO₂CF₃)₂⁻ (15). The iodide and bis(trifluorosulfonyl)amide (15) were prepared as above. Solid (mp = 38.4 °C). Yield, 91%. IR (KBr): 3143, 3096, 1493, 1351, 1193, 1140, 1059 cm⁻¹. ¹⁹F NMR: \delta -79.98 (s, 6F), -81.70 (tt, *J***₁ = 2.82 Hz,** *J***₂ = 12.71 Hz, 3F), -113.9 to -114.0 (m, 2F), -122.4 (bs, 2F), -123.5 (bs, 2F), -124.0 (bs, 2F), -126.8 to -126.9 (m, 2F). ¹H NMR: \delta 3.40 (tt,** *J***₁ = 7.39 Hz,** *J***₂ = 18.94 Hz, 2H), 5.35 (t,** *J* **= 7.41 Hz, 2H), 8.37 (t,** *J* **= 7.84 Hz, 2H), 8.84 (tt,** *J***₁ = 1.24 Hz,** *J***₂ = 7.84 Hz, 1H), 9.40 (d,** *J* **= 5.51 Hz, 2H). ¹³C NMR: \delta 147.8, 146.3, 129.6, 121.0 (q,** *J* **= 321.2 Hz), 105.0-124.0 (m), 54.83 (t,** *J* **= 4.75 Hz), 32.40 (t,** *J* **= 21.01 Hz). Anal. Calcd for C₁₅H₉F₁₉N₂O₄S₂: C, 25.50; H, 1.27; Found: C, 25.36; H, 1.39.**

Acknowledgment. We are grateful to Drs. G. Knerr and A. Blumenfeld for measuring MS and NMR spectra, respectively, and to NSF (CHE-0315275) for support of this research.

IC034669T